

NEWS RELEASE

Coeur Releases New High-Grade Mine Plan at Kensington Gold Mine

Reflects impact of new high-grade mineralization from ongoing exploration success

Full-year production expected to increase 34% to 149,000 ounces at 23% lower operating costs of \$732 per ounce in 2018 driven by 25% higher grade

Chicago, Illinois – April 14, 2015 – Coeur Mining, Inc. ("Coeur" or the "Company") (NYSE: CDE) announced an updated and re-scoped mine plan and a preliminary economic assessment for its Kensington gold mine located in Southeast Alaska. The new mine plan reflects the recent discovery of the high-grade Jualin zone and indicates higher overall production and significantly higher cash flows due to the contribution of higher-grade material from three nearby zones.

The Jualin zone, located approximately 8,250 feet from current mining activities, continues to expand based on ongoing drilling and contains an average gold grade over three times the average reserve grade of 0.185 oz/ton. Annual gold production between 2015 and 2020 at Kensington is expected to average approximately 128,000 ounces and costs applicable to sales ("CAS") are expected to average \$820 per gold ounce. Production in 2014 was 117,823 ounces at a CAS of \$951 per gold ounce.

"Our recent success identifying high-grade mineralization near existing Kensington infrastructure has added higher-margin production to our mine plan and significantly improved the expected economics of the mine," said Mitchell J. Krebs, Coeur's President and Chief Executive Officer. "Kensington's new mine plan is expected to be a key component of the Company's overall strategic repositioning that is expected to increase overall production levels by approximately 30%, reduce overall unit costs by approximately 25%, and boost the Company's free cash flow to \$190-\$200 million in 2017."

"Importantly, the required capital to place Jualin into production is estimated to be \$30 million and has an expected rate of return of around 70%. Incorporating a portion of expected production from Kensington's high-grade zones and the Jualin ore body has quadrupled our expected net cash flow at Kensington through 2022 and we believe considerable upside exists based on recent drill results. Through continued drilling, our goal is to expand these sources of high grade resources and extend the 2018 profile."

Mining Forecast	2014A	2015	2016	2017	2018	2019	2020	2021	2022	Total
Kensington – 3,250,000 Pr	oven and I	Probable R	eserve To	ns; 1,050,0	000 Inferr	ed Resour	ce Tons			
Ore (tons in 000s)	622	566	613	593	545	539	639	445	359	4,300
Grade (oz/t)	0.19	0.19	0.17	0.20	0.19	0.18	0.20	0.17	0.16	0.18
Gold prod. (oz in 000s)	114	102	99	107	96	89	118	68	53	733
Raven – 151,000 Proven a	Raven – 151,000 Proven and Probable Reserve Tons; 8,000 Inferred Resource Tons									
Ore (tons in 000s)	14	85	42	32	-	-	-	-	-	159
Grade (oz/t)	0.31	0.19	0.42	0.43	-	-	-	-	-	0.30
Gold prod. (oz in 000s)	4	15	16	13	-	-	-	-	-	44
Jualin – 257,000 Inferred	Resource T	Γons								
Ore (tons in 000s)	-	-	-	28	108	114	7	-	-	257
Grade (oz/t)	-	-	-	0.20	0.52	0.45	0.75	-	-	0.46
Gold prod. (oz in 000s)	-	-	-	5	52	48	5	-	-	110
Total										
Ore (tons in 000s)	636	652	655	653	653	653	647	445	359	4,716
Grade (oz/t)	0.20	0.19	0.19	0.21	0.25	0.23	0.21	0.17	0.16	0.20
Recovery rate	94.0%	92.8%	92.8%	92.8%	92.8%	92.8%	92.8%	92.8%	92.8%	92.8%

Gold prod. ¹ (oz in 000s)	118	118	115	125	149	137	123	68	53	888
CAS per gold ounce ¹	\$951	\$897	\$912	\$848	\$732	\$789	\$866	\$1,054	\$1,069	\$866
Capital expenditures	\$16	\$23	\$40	\$25	\$21	\$14	\$5	\$4	\$2	\$133

^{1.} Production reflects 97.5% smelter recovery. 2014 CAS based on gold ounces sold of 110,822.

Select Economic Estimates	Annual Average (LOM)	Total (LOM)
Revenue		
Gold price (\$/oz)	\$1,275	\$1,275
Gross revenue (\$mil)	\$138	\$1,104
Cash Flow (\$mil)		
Operating cash flow	\$42	\$336
Capital expenditures	\$17	\$133
Net cash flow	\$25	\$199
Post-Tax ¹ NPV (\$mil, 10% discount rate)		\$130

^{1.} Assumes no federal income taxes due to the ability to apply the Company's substantial NOL carryforward balance to any income generated by Kensington.

Operating Cost Assumptions	LOM
Average mining costs per ton mined	\$62
Average processing costs per ton processed	\$38
Average general and administrative costs per ton processed	\$39

Capital Cost Assumptions (\$mil)	Annual Average (LOM)	Total LOM
Mine development	\$11	\$87
Capitalized drilling	\$2	\$18
Tailings related	\$1	\$10
Equipment	\$1	\$10
Other (sustaining/infrastructure-related)	\$1	\$8
Total	\$17	\$133

The new mine plan for Kensington is a re-scoping of the existing mine plan contemplated in the December 31, 2014 Technical Report due to the high-grade discovery made in the Jualin vein system. The mine plan includes development of a decline to Jualin and new underground mine development, and reflects the inclusion of a portion of the estimated inferred mineral resources, which the Company expects to upgrade to measured and indicated resources and convert to reserves through a \$9.1 million drilling program over the next two years through more efficient drilling from underground. This program includes 44,000 feet of drilling from the 3,000 feet of planned development at Jualin.

Expected capital expenditures include approximately \$3.5 million per year through 2018 for capitalized drilling, primarily to upgrade the inferred mineral resources at Kensington and Jualin. Spending for underground mine development is expected to average \$16 million per year through 2018 when production from the inferred material is expected to be fully ramped up. Development of the decline to Jualin is planned to begin in July 2015 with initial production expected in mid-2017 at a mining rate of approximately 250 tons per day, which is expected to increase to 500 tons per day in early 2018 and represent approximately 27% of the average daily mill feed.

Results from recent drilling activity detailed below are not reflected in the reserves and resources used in the rescoped mine plan. This includes new holes in Jualin Vein 4 from the surface which cut mineralization approximately 1,000 feet away from the existing inferred resource included in the mine plan, demonstrating the possibility to expand Vein 4. High-grade drill results from other zones at Kensington as well as planned drilling in Veins 1, 2, 3, and 5 at Jualin suggest considerable upside exists to increase the size of the overall Jualin zone and bring additional high-margin production into the mine plan as drilling continues.

Select Resource Discovery Drill Results at Jualin, Vein 4: October 2014 – March 2015								
Mineralized Interval (Feet)								
Hole	From	To	Thickness	Estimated True Thickness	Gold Assays (Oz/short ton)			
Jualin								
JU14-X045	237.9	242.4	4.5	4.3	2.690			
JU14-X045	908.9	911.5	2.6	2.6	1.831			
JU14-X046	586.5	588.8	2.3	1.9	0.701			
JU15-X002	640.6	642.5	1.9	1.3	1.332			
JU15-X003	245.0	250.0	5.0	4.5	0.415			

5.5

4.4

0.559

Select Resource Discovery Drill Results at Kensington: October 2014 – March 201	15
Mineralized Interval (Feet)	

JU15-X006

598.5

604.0

Hole	From	To	Thickness	Estimated True Thickness	Gold Assays (Oz/short ton)
Zone 10 / Zone 20					
K14-0520-095-X03	44.5	45.7	1.2	1.1	4.453
K14-0520-095-X07	61.0	63.0	2.0	1.8	1.034
K14-0520-095-X07	550.5	553.0	2.5	2.2	0.940
K14-0520-095-X07	650.5	653.0	2.5	2.2	1.259
Zone 10 / Zone 12					
K14-1170-110-X01	263.0	266.0	3.0	2.0	0.686
K14-1170-110-X04	438.7	442.3	3.6	3.4	1.473
K14-1170-110-X04	462.7	470.3	7.6	7.2	0.433
K14-1170-110-X08	223.0	226.0	3.0	2.2	4.307

Select Resource Discovery Drill Results at Raven: October 2014 – March 2015

Mineralized Interval (Feet)								
Hole	From	To	Thickness	Estimated True Thickness	Gold Assays (Oz/short ton)			
Raven								
R14-1042-261-X03	117.0	124.2	7.2	5.4	0.706			
R14-1042-261-X04	107.0	110.0	3.0	2.8	1.851			
R14-1042-261-X05	85.0	90.0	5.0	4.2	1.139			
R14-1042-261-X08	84.7	86.0	1.3	1.0	0.879			

Select Further Delineation Drill Results: October 2014 – March 2015

			Mineralize	d Interval (Feet)	
Hole	From	To	Thickness	Estimated True Thickness	Gold Assays (Oz/short ton)
Zone 10 / Zone 50	_	_			
K14-0520-164-D01	160.0	161.0	1.0	1.0	2.690
K14-0520-164-D02	279.0	281.0	2.0	2.0	1.250
K14-0520-164-D02	328.0	332.0	4.0	4.0	2.920
K14-0520-164-D06	403.0	405.4	2.4	2.1	3.280
K14-0520-164-D07	467.0	471.0	4.0	2.9	1.670
Zone 10 / Zone 20					
K14-1170-164-D02	211.0	214.0	3.0	2.9	3.690
K14-1560-216-D01	348.0	354.2	6.2	5.7	1.548
Raven					
R14-0740-279-D01	105.0	108.2	3.2	1.9	1.034
R14-0740-279-D04	97.9	100.0	2.1	1.5	2.593

R14-0740-279-D05	78.6	83.6	5.0	4.6	2.599
R14-0740-279-D11	76.0	79.7	3.7	3.6	1.939
R14-0740-279-D12	88.5	92.2	3.7	3.2	1.090
R14-0740-305-D02	103.0	104.2	1.2	0.8	1.030
R14-0740-305-D03	107.0	110.0	3.0	1.9	0.850
R14-0820-237-D04	20.0	25.0	5.0	4.9	16.240

2014 Kensington Mineral Reserves and Resources by Area							
<u> </u>	Short Tons	Grade (oz/ton)	Ounces				
Proven Reserves							
Kensington	400,000	0.180	72,000				
Raven	17,000	0.412	7,000				
Probable Reserves							
Kensington	2,824,000	0.181	512,000				
Raven	162,000	0.241	39,000				
Total Proven and Probable Reserves	3,403,000	0.185	629,000				
Measured Resources							
Kensington	177,000	0.260	46,000				
Raven	4,000	0.250	1,000				
Indicated Resources							
Kensington	1,292,000	0.241	312,000				
Raven	93,000	0.258	24,000				
Total Measured and Indicated Resources	1,566,000	0.244	382,000				
Kensington inferred resources	1,265,000	0.296	375,000				
Raven inferred resources	68,000	0.235	16,000				
Jualin inferred resources	289,000	0.619	179,000				
Total Inferred Resources	1,622,000	0.351	570,000				

Notes to the above mineral reserves and resources:

- 1. Effective December 31, 2014.
- 2. Assumed metal price for estimated mineral reserves was \$1,275 per ounce of gold. Assumed metal price for estimated mineral resources was \$1,350 per ounce of gold.
- 3. Mineral resources are in addition to mineral reserves and do not have demonstrated economic viability. Inferred mineral resources are considered too speculative geologically to have the economic considerations applied to them that would enable them to be considered for estimation of mineral reserves, and there is no certainty that the inferred mineral resources will be realized.
- 4. Rounding of tons and ounces, as required by reporting guidelines, may result in apparent differences between tons, grade, and contained metal
- 5. For details on the estimation of mineral resources and reserves, including the key assumptions, parameters and methods used to estimate the mineral resources and reserves, Canadian investors should refer to the NI 43-101-compliant Technical Report for Kensington filed February 18, 2015 at www.sedar.com.

C	version	Table
C.on	version	- i anie

1 short ton	=	0.907185 metric tons
1 troy ounce	=	31.10348 grams

A slide deck to accompany this release is posted at www.coeur.com.

The preliminary economic assessment for the re-scoped mine plan is preliminary in nature and includes inferred mineral resources, and does not have as high a level of certainty as a plan that was based solely on proven and probable reserves. Inferred mineral resources are considered too speculative geologically to have the economic considerations applied to them that would enable them to be considered for estimation of mineral reserves, and there is no certainty that the results from the preliminary economic assessment will be realized.

About Coeur

Coeur Mining is the largest U.S.-based silver producer and a significant gold producer with five precious metals mines in the Americas employing approximately 2,100 people. Coeur produces from its wholly owned operations: the Palmarejo silver-gold mine in Mexico, the San Bartolomé silver mine in Bolivia, the Rochester silver-gold mine in Nevada, the Kensington gold mine in Alaska, and the Wharf gold mine in South Dakota. The Company also has a non-operating interest in the Endeavor mine in Australia in addition to royalties on the Cerro Bayo mine in Chile, the El Gallo complex in Mexico, the Zaruma mine

in Ecuador, and the Correnso mine in New Zealand. In addition, the Company has two silver-gold feasibility stage projects - the La Preciosa project in Mexico and the Joaquin project in Argentina. The Company also conducts ongoing exploration activities in Alaska, Argentina, Bolivia, Mexico, and Nevada. The Company owns strategic investment positions in several silver and gold development companies with projects in North and South America.

Cautionary Statement

This news release contains forward-looking statements within the meaning of securities legislation in the United States and Canada, including statements regarding projected mine life, cash flows, economics, costs, capital expenditures, rates of return, production, processing rates, grade, exploration and development work, and the ability to upgrade inferred resources to measured and indicated resources and convert resources to reserves and add additional production to the mine plan. Such forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause Coeur's actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Such factors include, among others, the risks and hazards inherent in the mining business (including risks inherent in developing large-scale mining projects, environmental hazards, industrial accidents, weather or geologically related conditions), changes in the market prices of gold and silver and a sustained lower price environment, the uncertainties inherent in Coeur's production, exploratory and developmental activities, including risks relating to permitting and regulatory delays, ground conditions, grade variability, any future labor disputes or work stoppages, the uncertainties inherent in the estimation of gold and silver reserves and resources, changes that could result from Coeur's future acquisition of new mining properties or businesses, reliance on third parties to operate certain mines where Coeur owns silver production and reserves and the absence of control over mining operations in which Coeur or its subsidiaries hold royalty or streaming interests and risks related to these mining operations including results of mining and exploration activities, environmental, economic and political risks of the jurisdiction in which the mining operations are located, the loss of access to any third-party smelter to which Coeur markets silver and gold, the effects of environmental and other governmental regulations, the risks inherent in the ownership or operation of or investment in mining properties or businesses in foreign countries, Coeur's ability to raise additional financing necessary to conduct its business, make payments or refinance its debt, as well as other uncertainties and risk factors set out in filings made from time to time with the United States Securities and Exchange Commission, and the Canadian securities regulators, including, without limitation, Coeur's most recent report on Form 10-K. Actual results, developments and timetables could vary significantly from the estimates presented. Readers are cautioned not to put undue reliance on forward-looking statements. Coeur disclaims any intent or obligation to update publicly such forward-looking statements, whether as a result of new information, future events or otherwise. Additionally, Coeur undertakes no obligation to comment on analyses, expectations or statements made by third parties in respect of Coeur, its financial or operating results or its securities.

W. David Tyler, Coeur's Vice President, Technical Services and a qualified person under Canadian National Instrument 43-101, supervised the preparation of the scientific and technical information concerning Coeur's mineral projects in this news release. Mineral resources are in addition to mineral reserves and do not have demonstrated economic viability. Inferred mineral resources are considered too speculative geologically to have the economic considerations applied to them that would enable them to be considered for estimation of mineral reserves, and there is no certainty that the inferred mineral resources will be realized. For a description of the key assumptions, parameters and methods used to estimate mineral reserves and resources, as well as data verification procedures and a general discussion of the extent to which the estimates may be affected by any known environmental, permitting, legal, title, taxation, socio-political, marketing or other relevant factors, Canadian investors should refer to the relevant NI 43-101-compliant Technical Report for Kensington filed February 18, 2015 at www.sedar.com.

Cautionary Note to U.S. Investors - The United States Securities and Exchange Commission permits U.S. mining companies, in their filings with the SEC, to disclose only those mineral deposits that a company can economically and legally extract or produce. We may use certain terms in public disclosures, such as "measured," "indicated," "inferred" and "resources," that are recognized by Canadian regulations, but that SEC guidelines generally prohibit U.S. registered companies from including in their filings with the SEC. U.S. investors are urged to consider closely the disclosure in our Form 10-K which may be secured from us, or from the SEC's website at www.sec.gov.

All tons are reported in U.S. standard short ton units. Grades reported are troy ounces per short ton.

For Additional Information:

Bridget Freas, Director, Investor Relations (312) 489-5819

Donna Mirandola, Director, Corporate Communications (312) 489-5842

www.coeur.com

APPENDIX

R14-1042-261-X02

100.0

103.0

3.0

Kensington Resource Discovery Drill Results: October 2014 – March 2015							
Kensington Resour	rce Discov	ery Drui		ober 2014 – March 2015 Interval (Feet)			
Hole	From	То	Thickness	Estimated True Thickness	Gold Assays (Oz/short ton)		
Jualin	FIUII	10	Tillekiless	Estimated True Timekness	Gold Assays (Ozishoft toll)		
JU14-X045	237.9	242.4	4.5	4.3	2.690		
JU14-X045	472.5	473.5	1.0	1.0	0.161		
JU14-X045	480.8	483.1	2.3	2.2	0.365		
JU14-X045	908.9	911.5	2.6	2.6	1.831		
JU14-X046	260.0	264.0	4.0	3.3	0.222		
JU14-X046	586.5	588.8	2.3	1.9	0.701		
JU14-X046	606.3	610.0	3.7	3.0	0.173		
JU15-X001	221.4	230.0	8.6	7.8	0.231		
JU15-X001	243.0	248.0	5.0	4.6	0.163		
JU15-X001	488.4	491.5	3.1	2.9	0.191		
JU15-X001	944.0	947.5	3.5	3.3	0.350		
JU15-X002	121.0	125.0	4.0	2.8	0.206		
JU15-X002	640.6	642.5	1.9	1.3	1.332		
JU15-X002	740.0	744.0	4.0	2.7	0.266		
JU15-X002	1291.0	1295.6	4.6	3.1	0.396		
JU15-X003	245.0	250.0	5.0	4.5	0.415		
JU15-X003	275.0	280.0	5.0	4.5	0.273		
JU15-X003	551.3	554.0	2.7	2.5	2.038		
JU15-X003	641.0	643.5	2.5	2.3	0.233		
JU15-X004							
JU15-X005				No significant assays			
JU15-X006	598.5	604.0	5.5	4.4	0.559		
Zone 10 / Zone 20							
K14-0520-095-X03	44.5	45.7	1.2	1.1	4.453		
K14-0520-095-X03	173.5	177.8	4.3	4.0	0.197		
K14-0520-095-X07	61.0	63.0	2.0	1.8	1.034		
K14-0520-095-X07	335.5	337.0	1.5	1.3	0.593		
K14-0520-095-X07	550.5	553.0	2.5	2.2	0.940		
K14-0520-095-X07	650.5	653.0	2.5	2.2	1.259		
Zone 10 / Zone 12							
K14-1170-110-X01	263.0	266.0	3.0	2.0	0.686		
K14-1170-110-X01	553.0	557.0	4.0	2.7	0.220		
K14-1170-110-X04	118.0	121.0	3.0	2.9	0.175		
K14-1170-110-X04	316.3	318.0	1.7	1.7	0.181		
K14-1170-110-X04	438.7	442.3	3.6	3.4	1.473		
K14-1170-110-X04	462.7	470.3	7.6	7.2	0.433		
K14-1170-110-X08	145.0	148.0	3.0	2.2	0.203		
K14-1170-110-X08	223.0	226.0	3.0	2.2	4.307		
K14-1170-110-X08	408.0	412.0	4.0	2.9	0.251		
Raven					-		

2.8

0.210

R14-1042-261-X03	117.0	124.2	7.2	5.4	0.706
R14-1042-261-X04	107.0	110.0	3.0	2.8	1.851
R14-1042-261-X05	85.0	90.0	5.0	4.2	1.139
R14-1042-261-X05	121.3	125.0	3.7	3.1	0.189
R14-1042-261-X07	140.0	145.0	5.0	4.3	0.548
R14-1042-261-X07	153.0	158.0	5.0	4.3	0.173
R14-1042-261-X08	84.7	86.0	1.3	1.0	0.879
R14-1042-261-X08	141.5	143.0	1.5	1.2	0.578
R14-1042-261-X08	148.8	153.0	4.2	3.4	0.232
R14-1042-261-X08	218.0	222.0	4.0	3.2	0.168
R14-1042-261-X08	234.5	236.9	2.4	2.0	0.343
R14-1042-261-X10	146.0	149.0	3.0	2.4	0.552
R14-1042-261-X11	90.0	95.0	5.0	3.1	0.192

Konsington	Further	Delineation	Drill Results.	October 2014 -	March 2015
Mensingion	1 willer	Denneanon	Dim Resums.	OCIOUCI 2017 -	· Multiplication

Mineralized Interval (Feet)						
Hole	From	To	Thickness	Estimated True Thickness	Gold Assays (Oz/short ton)	
Zone 10 / Zone 50						
K14-0520-125-D02	364.6	365.8	1.2	1.1	0.616	
K14-0520-125-D02	475.5	479.5	4.0	3.7	0.163	
K14-0520-125-D12	97.1	100.0	2.9	2.2	0.200	
K14-0520-125-D12	283.0	284.5	1.5	1.1	0.166	
K14-0520-125-D12	437.0	439.5	2.5	1.9	0.501	
K14-0520-125-D12	541.5	542.9	1.4	1.1	0.230	
K14-0520-125-D12	581.0	582.5	1.5	1.1	0.298	
K14-0520-125-D12	615.6	617.3	1.7	1.3	0.374	
K14-0520-125-D12	653.1	654.1	1.0	0.8	0.196	
K14-0520-161-D03	388.5	390.0	1.5	0.9	0.228	
K14-0520-161-D03	404.7	406.2	1.5	0.9	0.190	
K14-0520-161-D03	481.9	489.2	7.3	4.6	0.384	
K14-0520-161-D04	419.5	421.0	1.5	0.9	0.770	
K14-0520-161-D04	431.0	434.0	3.0	1.9	0.360	
K14-0520-161-D04	473.7	476.4	2.7	1.7	0.277	
K14-0520-161-D04	480.0	484.9	4.9	3.0	0.286	
K14-0520-161-D04	522.3	524.0	1.7	1.1	0.162	
K14-0520-161-D04	553.0	557.8	4.8	3.0	0.279	
K14-0520-161-D04	562.0	563.0	1.0	0.6	0.550	
K14-0520-161-D06	92.0	95.0	3.0	3.0	0.195	
K14-0520-161-D06	260.0	263.8	3.8	3.8	0.360	
K14-0520-161-D06	284.6	285.6	1.0	1.0	0.282	
K14-0520-161-D06	325.0	330.0	5.0	5.0	0.235	
K14-0520-161-D06	337.0	340.0	6.0	6.0	0.374	
K14-0520-164-D01	160.0	161.0	1.0	1.0	2.690	
K14-0520-164-D01	279.0	284.0	5.0	4.8	0.168	
K14-0520-164-D01	332.0	339.0	7.0	6.7	0.455	
K14-0520-164-D02	252.0	255.0	3.0	3.0	0.720	

K14-0520-164-D02	279.0	281.0	2.0	2.0	1.250
K14-0520-164-D02	328.0	332.0	4.0	4.0	2.920
K14-0520-164-D05	360.0	363.0	3.0	2.9	0.490
K14-0520-164-D05	372.0	377.0	5.0	4.8	0.173
K14-0520-164-D06	355.0	365.0	10.0	8.8	0.245
K14-0520-164-D06	380.0	395.0	15.0	13.1	0.222
K14-0520-164-D06	403.0	405.4	2.4	2.1	3.280
K14-0520-164-D07	419.0	428.0	9.0	6.5	0.414
K14-0520-164-D07	458.0	463.0	5.0	3.6	0.960
K14-0520-164-D07	467.0	471.0	4.0	2.9	1.670
K14-0520-164-D07	538.0	543.0	5.0	3.6	0.234
Zone 10 / Zone 20					
K14-1170-164-D01	206.0	211.0	5.0	5.0	0.450
K14-1170-164-D01	268.0	275.0	7.0	6.9	0.196
K14-1170-164-D02	201.0	206.0	5.0	4.8	0.166
K14-1170-164-D02	211.0	214.0	3.0	2.9	3.690
K14-1170-164-D02	224.0	229.0	5.0	4.9	0.25
K14-1170-164-D02	310.2	313.2	3.0	2.9	0.600
K14-1170-164-D03	296.0	307.4	11.4	10.5	0.441
K14-1170-164-D03	357.0	360.0	3.0	2.8	0.189
K14-1170-164-D04	224.0	227.0	3.0	2.6	0.410
K14-1170-164-D04	298.0	302.0	4.0	3.4	0.450
K14-1560-216-D01	348.0	354.2	6.2	5.7	1.548
K14-1560-216-D02	231.0	236.0	5.0	4.7	0.217
K14-1560-216-D02	319.0	324.0	5.0	4.7	0.670
K14-1560-216-D02	328.0	332.0	4.0	3.7	0.730
K14-1560-216-D03	228.0	230.5	2.5	2.4	0.300
K14-1560-216-D03	328.8	331.0	2.2	2.1	0.202
K14-1560-216-D03	335.0	338.4	3.4	3.3	0.267
K14-1560-216-D05	239.0	243.0	4.0	3.8	0.540
K14-1560-216-D05	263.0	266.0	3.0	2.9	0.197
K14-1560-216-D05	326.0	331.0	5.0	4.8	0.330
K14-1560-216-D06	233.0	240.0	7.0	6.7	0.600
K14-1560-216-D06	263.0	266.0	3.0	2.9	0.208
K14-1560-216-D06	341.2	344.8	3.6	3.5	0.218
K14-1560-216-D07	330.5	335.0	4.5	4.3	0.254
K14-1560-216-D07	347.0	351.0	4.0	3.8	0.18
K14-1560-216-D08	278.1	279.5	1.4	1.3	0.310
Raven					
R14-0740-279-D01	105.0	108.2	3.2	1.9	1.034
R14-0740-279-D04	97.9	100.0	2.1	1.5	2.593
R14-0740-279-D05	78.6	83.6	5.0	4.6	2.599
R14-0740-279-D08	83.0	91.0	8.0	6.1	0.196
R14-0740-279-D11	76.0	79.7	3.7	3.6	1.939
R14-0740-279-D11	82.5	85.5	3.0	2.9	0.186

R14-0740-279-D12	72.3	74.1	1.8	1.5	0.234
R14-0740-279-D12	88.5	92.2	3.7	3.2	1.090
R14-0740-305-D02	103.0	104.2	1.2	0.8	1.030
R14-0740-305-D03	107.0	110.0	3.0	1.9	0.850
R14-0740-305-D05A	41.8	43.6	1.8	1.3	0.470
R14-0740-305-D06	27.0	29.0	2.0	1.7	0.370
R14-0820-237-D04	20.0	25.0	5.0	4.9	16.240
R14-0820-237-D04	123.3	126.0	2.7	2.7	0.221
R14-0820-237-D07	168.5	178.5	10.0	7.8	0.241

Notes:

- 1. Drill intercepts full and half HQ and NQ core for infill holes, samples prepared at Kensington Mine, Juneau, AK, and at ALS-Chemex Labs, Reno, NV with final sample preparation to pulp and analyses at ALS-Chemex Labs, Reno, NV.
- 2. Samples were analyzed by 30 gram fire assay with atomic absorption finish for Au <1 ppm or by 1000 gram Metallic Screen.
- 3. Drill intercepts calculated at 0.05 oz/ton Au. Maximum of 5 feet of internal dilution (less than cutoff) permitted in compositing. "Including" calculated at 0.15 cut-off grade.
- 4. All assays uncapped.